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mediate temperatures. We see, for instance, 
that this approximation leaves 'Y independent 
of temperature. At high temperatures, 'Y is 
observed to be fairly constant, but below the 
Debye temperature it usually becomes tem
perature dependent. 

The relationship of Thompsen's[t] equa
tions to those derived here should be clarified. 
Thomsen's equation (40) is analogous to the 
present equation (32), in terms of TJ, trun
cated after the fourth order term. The only 
substantial difference is that the reference 
state has not been specified here, whereas 
Thomsen identified it with the stress-free rest 
configuration of the lattice. From the point of 
view of lattice dynamics, the latter is the 
natural reference state, but if the present 
equations are viewed as finite strain equa
tions, in which thermal effects are (approx
imately) explicitly included, then the reference 
state is arbitrary (with the qualification that. 
the approximation is poorer further from the 
rest state). Considerable convenience accrues 
in some applications from identifying the 
reference state as that at which experimental 
data are available, since Thomsen's [I] set of 
six simultaneous non-linear equations, relat
ing his parameters to experimental quantities, 
is thereby avoided. 

The expressions (24), (27) and (28) for 'Y 
given here have a certain arbitrariness. It 
would be possible, for instance, to expand 
them to the appropriate order in strain, or to 
do as Thomsen[l] did, i.e. by analogy to the 
pressure equation, to retain the factor arising 
from the volume differentiation and expand 
the remaining quotient. Thomsen's expression 
(43) for 'Y, apart from the reference state, is 

where A = - (hi - g2)/18, which could be 
obtained from (27). In principle, there is no 
reason to prefer any of these forms over the 
others, but some trial calculations indicate 
that equations (24), (27) or (28) are less likely 
to give negative values of 'Y at large com-

press ions than (43) or its analogues. This 
may not be a sufficient criterion in some cases, 
however, since 'Y may approach zero near a 
phase change [ 14]. 

Thomsen's assertion[I] , that the use of a 
fourth-order expansion in terms of TJ assures 
consistency with the expansion (3) of 1> upon 
which the lattice dynamics is based can be 
seen to be incorrect. In fact, from (19) and 
(21) , TJ = e + !e2

• Substitution of this relation 
into a fourth-order TJ expansion would yield 
up to eighth-order terms in e. Thus truncation 
of an e expansion at the fourth order would 
involve a different truncation error, and hence 
a different approximation. 

Finally, some comments on the capabilities 
of the present theory. Thomsen [2, p. 367] 
pointed out that although this theory predicts 
that the elastic moduli (in the present case, K) 
are linear in T at high temperature and at 
constant volume , this does not imply linearity 
at constant pressure. Thus , measured non
linearity of elastic moduli with T , taken at 
zero pressure, does not imply that a higher
order thermal theory is required. However, 
Thomsen[l , p. 2009,2010; 2, p. 370] goes on 
to claim that non-zero values of (iJ2cafj/iJPiJT) , 
where cafj is an elastic modulus, do require a 
higher-order theory for their description. 
It has been argued here that the Mie
Griineisen equation is valid at arbitrary 
volumes; therefore an arbitrary number of 
derivatives may be taken and the thermal 
contribution will be concluded, though it will 
still be 0«(52). Thus, thermal contributions to all 
pressure derivatives of elastic moduli will 
result from this theory. Of course, the pre
dicted value of the temperature coefficient 
may not agree with measured values, but the 
mere existence of a non-zero temperature 
coefficient is not sufficient grounds for 
requiring a higher order thermal theory. 

S. ISENTROPES 

The Mie-Grtineisen equation (17) can be 
regarded as giving the pressure either as a 
function of strain and temperature, or as a 
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function of strain and entropy. Thus an 
expression for the pressure along an isentrope 
can be obtained by expanding (17) in terms of 
strain at constant entropy. The temperature, 
or entropy, dependence of (17) is through U q' 

From the result [3, p. 356] that 

(44) (~) -_1'....U av s - V q, 

one can obtain the expansion of U q in terms 
of e, for instance, at constant entropy: 

Uq(e, S) = Uqo+tgUqOe 

+H2h- g2) Uq
Oe2+ . . '. (45) 

The result of substituting (45) into (17) is 
an equation of exactly the same form as (31): 

_ (1 + e)-2 2 
pee , S) -- 3V

o 
(aoS+aI Se +a2Se 

+ a3Se3 + ... ) (46) 

where the new coefficients are 

ats = #Olll+ .. " 
a3S = tcf>olV + .. '. 

(46a) 

(46b) 

(46c) 

(46d) 

Analogous results are obtained for the 
equations in terms of '1) and E. Equations (46) 
thus give the pressure along an isentrope in 
terms of the same parameters (namely g, h, 
and the derivatives of cf» as (31) for an 
isotherm. 

6. HUGONIOTS 

In principle, it is possible to relate deriva
tives along a Hugoniot to isothermal deriva
tives in a manner similar to that of the 
previous section, but since these relations 
are more complicated, it is easjer to obtain 
the Hugoniot pressure from the energy 
difference between it and some reference 
curve. Expressions for Hugoniots have been 

given, for instance, by Thomsen [1] who 
related the Hugoniot to the static pressure 
- (dcf>/dV), and, for example, Ahrens et af. 
[15] and McQueen et al. [16] who relate the 
Hugoniot to an isentrope. Since the latter 
method does not require the intermediate 
calculation of the derivatives of cf>, and since 
the results of the last section can be used, it 
will be used here. 

The Hugoniot equation derived here will 
be generalized to take account of possible 
initial porosity of the material or a phase 
change during the shock process. The term 
'high pressure phase' will be taken here to 
include the compacted, non-porous material 
in the case of initial porosity. 

Take the initial state of the material to be 
P = 0, V = V~, T = To, the (P = 0, T = To) 
voJume of the high pressure phase to be Yo, 
and the final shocked state to be (Ph, V, T h)' 
The Rankine-Hugoniot equations give, in this 
case, 

U(V, T) - U(V~, To) =tP(V~- V), (47) 

where U is the total internal energy, which, 
in the quasi-harmonic approximation, is 
U = ;j; + U q. Define the transition energy Et as 

Et can be obtained from the enthalpy of phase 
change, if it is known. If there is no phase 
transition, i.e. if there is only a reduction of 
porosity, then this can be taken as zero (the 
surface energy of the pores can be neglected 
[ 17]). 

If the pressure and temperature on the 
isentrope centered at P = 0, V = Vo are Ps and 
Ts, respectively, at V, then, from (17) 

Ps can be calculated according to the previous 
section. From the identity 

(50) 


